Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38586060

RESUMO

G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The ß2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.

2.
Nature ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480881

RESUMO

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.

3.
J Biol Chem ; 300(4): 105785, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38401845

RESUMO

The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of ß-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of ß-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the ß-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of ß-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (ßR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.

5.
Chemistry ; 30(11): e202303506, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38212242

RESUMO

ß2 -adrenergic receptor (ß2 -AR) agonists are used for the treatment of asthma and chronic obstructive pulmonary disease, but also play a role in other complex disorders including cancer, diabetes and heart diseases. As the cellular and molecular mechanisms in various cells and tissues of the ß2 -AR remain vastly elusive, we developed tools for this investigation with high temporal and spatial resolution. Several photoswitchable ß2 -AR agonists with nanomolar activity were synthesized. The most potent agonist for ß2 -AR with reasonable switching is a one-digit nanomolar active, trans-on arylazopyrazole-based adrenaline derivative and comprises valuable photopharmacological properties for further biological studies with high structural accordance to the native ligand adrenaline.


Assuntos
Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2 , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Sondas Moleculares , Receptores Adrenérgicos beta 2/química , Epinefrina/farmacologia , Transdução de Sinais
6.
ChemMedChem ; 18(23): e202300228, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37817331

RESUMO

Converting known ligands into photoswitchable derivatives offers the opportunity to modulate compound structure with light and hence, biological activity. In doing so, these probes provide unique control when evaluating G-protein-coupled receptor (GPCR) mechanism and function. Further conversion of such compounds into covalent probes, known as photoswitchable tethered ligands (PTLs), offers additional advantages. These include localization of the PTLs to the receptor binding pocket. Covalent localization increases local ligand concentration, improves site selectivity and may improve the biological differences between the respective isomers. This work describes chemical, photophysical and biochemical characterizations of a variety of PTLs designed to target the µ-opioid receptor (µOR). These PTLs were modeled on fentanyl, with the lead disulfide-containing agonist found to covalently interact with a cysteine-enriched mutant of this medically-relevant receptor.


Assuntos
Fentanila , Receptores Opioides mu , Ligantes , Receptores Opioides mu/metabolismo , Fentanila/química , Ligação Proteica , Cisteína/metabolismo
7.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745391

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.

8.
J Med Chem ; 66(14): 9710-9730, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37450764

RESUMO

The high affinity dopamine D4 receptor ligand APH199 and derivatives thereof exhibit bias toward the Gi signaling pathway over ß-arrestin recruitment compared to quinpirole. Based on APH199, two novel groups of D4 subtype selective ligands were designed and evaluated, in which the original benzyl phenylsemicarbazide substructure was replaced by either a biphenylmethyl urea or a biphenyl urea moiety. Functional assays revealed a range of different bias profiles among the newly synthesized compounds, namely, with regard to efficacy, potency, and GRK2 dependency, in which bias factors range from 1 to over 300 and activation from 15% to over 98% compared to quinpirole. These observations demonstrate that within bias, an even more precise tuning toward a particular profile is possible, which─in a general sense─could become an important aspect in future drug development. Docking studies enabled further insight into the role of the ECL2 and the EPB in the emergence of bias, thereby taking advantage of the diversity of functionally selective D4 agonists now available.


Assuntos
Agonistas de Dopamina , Receptores de Dopamina D4 , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/química , Quimpirol , Receptores de Dopamina D4/química , Dopamina , Ligantes
9.
Addict Biol ; 28(8): e13305, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500485

RESUMO

Alcohol consumption is a widespread behaviour that may eventually result in the development of alcohol use disorder (AUD). Alcohol, however, is rarely consumed in pure form but in fruit- or corn-derived preparations, like beer. These preparations add other compounds to the consumption, which may critically modify alcohol intake and AUD risk. We investigated the effects of hordenine, a barley-derived beer compound on alcohol use-related behaviours. We found that the dopamine D2 receptor agonist hordenine (50 mg/kg) limited ongoing alcohol consumption and prophylactically diminished relapse drinking after withdrawal in mice. Although not having reinforcing effects on its own, hordenine blocked the establishment of alcohol-induced conditioned place preference (CPP). However, it independently enhanced alcohol CPP retrieval. Hordenine had a dose-dependent inhibitory effect on locomotor activity. Chronic hordenine exposure enhanced monoamine tissue levels in many brain regions. Further characterization revealed monoaminergic binding sites of hordenine and found a strong binding on the serotonin and dopamine transporters, and dopamine D3 , and adrenergic α1A and α2A receptor activation but no effects on GABAA receptor or glycinergic signalling. These findings suggest that natural ingredients of beer, like hordenine, may work as an inhibitory and use-regulating factor by their modulation of monoaminergic signalling in the brain.


Assuntos
Alcoolismo , Camundongos , Animais , Alcoolismo/tratamento farmacológico , Cerveja/análise , Dopamina , Tiramina , Etanol/farmacologia , Agonistas de Dopamina , Consumo de Bebidas Alcoólicas
10.
Food Chem ; 427: 136637, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385059

RESUMO

Activation of the µ-opioid receptor (µOR) by food components could lead to reward effects or to the modulation of motor functions in the gastrointestinal tract. In an unbiased search for novel µOR agonists in food, a three-step virtual-screening process selected 22 promising candidates with potential to interact with the µOR. Radioligand binding studies showed that ten of these substances indeed bind to the receptor. Functional assays identified kukoamine A as a full agonist (EC50 = 5.6 µM) and kukoamine B as a partial agonist (EC50 = 8.7 µM) to µOR. After extraction, both kukoamines were analyzed by LC-MS/MS in potato, tomato, pepper, and eggplant. Depending on the potato variety, up to 16 µg of kukoamine A and 157 µg of kukoamine B per gram dry weight could be determined in the whole tuber, mainly concentrated in the potato peel. Cooking did not influence the kukoamine contents.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Receptores Opioides
11.
Proc Natl Acad Sci U S A ; 120(22): e2220979120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216510

RESUMO

The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and ßarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.


Assuntos
Endossomos , Receptores da Neurocinina-1 , Camundongos , Humanos , Animais , Receptores da Neurocinina-1/genética , Aprepitanto/farmacologia , Substância P/farmacologia , Receptores Acoplados a Proteínas G , Dor/tratamento farmacológico
13.
Eur J Med Chem ; 254: 115386, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094450

RESUMO

The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.


Assuntos
Neurotensina , Doença de Parkinson , Animais , Humanos , Camundongos , Dopamina , Ligantes , Neurotensina/farmacologia , Neurotensina/metabolismo , Doença de Parkinson/tratamento farmacológico , Ligação Proteica , Receptores de Neurotensina/metabolismo
14.
ChemMedChem ; 18(15): e202300144, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088715

RESUMO

By using active pharmaceutical ingredients (APIs) previously recovered from expired drugs, it is shown that Selectfluor can act as a reagent for operationally simple late-stage fluorination and chlorination of electron-rich arenes under mild reaction conditions. As shown in mechanistic experiments, aromatic fluorination thereby competes with chlorine-for-fluorine exchange on Selectfluor and subsequent aromatic chlorination, whereat the chloride ions may either be provided by the hydrochloride salt of the respective API or by triethylammonium chloride. Biological testing of the fluorinated or chlorinated APIs at adrenergic, dopaminergic, muscarinergic, opioid or serotoninergic receptors demonstrated that improved binding affinities can be achieved via this straightforward strategy.


Assuntos
Cloretos , Halogenação , Estrutura Molecular , Flúor
15.
Cell Mol Life Sci ; 80(4): 114, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012410

RESUMO

The human GPCR family comprises circa 800 members, activated by hundreds of thousands of compounds. Bitter taste receptors, TAS2Rs, constitute a large and distinct subfamily, expressed orally and extra-orally and involved in physiological and pathological conditions. TAS2R14 is the most promiscuous member, with over 150 agonists and 3 antagonists known prior to this study. Due to the scarcity of inhibitors and to the importance of chemical probes for exploring TAS2R14 functions, we aimed to discover new ligands for this receptor, with emphasis on antagonists. To cope with the lack of experimental structure of the receptor, we used a mixed experimental/computational methodology which iteratively improved the performance of the predicted structure. The increasing number of active compounds, obtained here through experimental screening of FDA-approved drug library, and through chemically synthesized flufenamic acid derivatives, enabled the refinement of the binding pocket, which in turn improved the structure-based virtual screening reliability. This mixed approach led to the identification of 10 new antagonists and 200 new agonists of TAS2R14, illustrating the untapped potential of rigorous medicinal chemistry for TAS2Rs. 9% of the ~ 1800 pharmaceutical drugs here tested activate TAS2R14, nine of them at sub-micromolar concentrations. The iterative framework suggested residues involved in the activation process, is suitable for expanding bitter and bitter-masking chemical space, and is applicable to other promiscuous GPCRs lacking experimental structures.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Reprodutibilidade dos Testes , Ligação Proteica
16.
Nat Commun ; 14(1): 2138, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059717

RESUMO

G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the ß1 and ß2 adrenergic receptors (ß1AR and ß2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the ß2AR over the ß1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the ß2AR, as well as a less stable binding pocket for constrained epinephrine in the ß1AR. The differences in the amino acid sequence of the extracellular vestibule of the ß1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the ß2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.


Assuntos
Catecolaminas , Receptores Adrenérgicos beta 2 , Ligantes , Receptores Adrenérgicos beta 2/metabolismo , Epinefrina/farmacologia , Sequência de Aminoácidos
17.
Angew Chem Int Ed Engl ; 62(22): e202218959, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36914577

RESUMO

G-protein-coupled receptors (GPCRs) play important roles in physiological processes and are modulated by drugs that either activate or block signaling. Rational design of the pharmacological efficacy profiles of GPCR ligands could enable the development of more efficient drugs, but is challenging even if high-resolution receptor structures are available. We performed molecular dynamics simulations of the ß2 adrenergic receptor in active and inactive conformations to assess if binding free energy calculations can predict differences in ligand efficacy for closely related compounds. Previously identified ligands were successfully classified into groups with comparable efficacy profiles based on the calculated shift in ligand affinity upon activation. A series of ligands were then predicted and synthesized, leading to the discovery of partial agonists with nanomolar potencies and novel scaffolds. Our results demonstrate that free energy simulations enable design of ligand efficacy and the same approach can be applied to other GPCR drug targets.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/química , Conformação Proteica
18.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993214

RESUMO

G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the ß 2 -adrenergic receptor (ß 2 AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor. Twenty transition structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of events driving G protein activation upon GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα Switch regions and the α5 helix that weaken the G protein-receptor interface. Molecular dynamics (MD) simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP upon closure of the alpha-helical domain (AHD) against the nucleotide-bound Ras-homology domain (RHD) correlates with irreversible α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signaling events.

19.
J Med Chem ; 66(5): 3499-3521, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36847646

RESUMO

The bitter taste receptor TAS2R14 is a G protein-coupled receptor that is found on the tongue as well as in the human airway smooth muscle and other extraoral tissues. Because its activation causes bronchodilatation, TAS2R14 is a potential target for the treatment of asthma or chronic obstructive pulmonary disease. Structural variations of flufenamic acid, a nonsteroidal anti-inflammatory drug, led us to 2-aminopyridines showing considerable efficacy and potency in an IP1accumulation assay. In combination with an exchange of the carboxylic moiety by a tetrazole unit, a set of promising new TAS2R14 agonists was developed. The most potent ligand 28.1 (EC50 = 72 nM) revealed a six-fold higher potency than flufenamic acid and a maximum efficacy of 129%. Besides its unprecedented TAS2R14 activation, 28.1 revealed marked selectivity over a panel of 24 non-bitter taste human G protein-coupled receptors.


Assuntos
Ácido Flufenâmico , Paladar , Humanos , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso
20.
Nat Commun ; 14(1): 376, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690613

RESUMO

The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and ß-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance ß-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.


Assuntos
Acetilcolina , Receptores Muscarínicos , Microscopia Crioeletrônica , Regulação Alostérica/fisiologia , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ligantes , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...